Chapter 5: Review Exercise Solutions

R5.1

a) n = 1, k = 2, r = 1

b) n = 1, k = 2, r = 2

c) n = 1, k = 1, r = 2

d) n = 1, k = 6, r = 3

R5.2

In the first block, the conditions are evaluated sequentially, so s could be incremented twice. In the second block, the conditional statements are mutually exclusive, so, s cannot be incremented more than once.

R5.3

a) There are two errors in this code. First, there are no parentheses around the x > 0 part of the if statement. Secondly, there is an extraneous then which is not part of the Java syntax, instead we should wrap the body of the if statement in curly braces. A correct form would be:

if (x > 0) { System.out.print(x); }

b) In this statement there aren’t enough parentheses to balance the condition (there are only two). The following would be correct:

if (1 + x > Math.pow(x, Math.sqrt(2))) { y = y + x; }

c) In this case there is only a single = in the if statement. Likely the programmer wanted to check for equality rather than set x equal to the value of 1. A correct form would be:

if (x == 1) { y++; }

d) The problem in this case is that the programmer tried to validate the input after she read it thus defeating the whole purpose of input validation. Instead we should take the line which reads the integer into the body of the if statement, like this:

if (in.hasNextInt())

{

 x = in.nextInt();

 sum = sum + x;

}

else

{

 System.out.println("Bad input for x");

}

e) The if statements should be an if/else if/else sequence. More than one if statement will be executed for any grade higher than 60 and the letter grade will be wrongly assigned.

R5.4

a) -1

b) 1

c) 1.0

d) 2.0

R5.5

if (x > 0.0)

{

 y = x;

}

else

{

 y = 0.0;

}

R5.6

if (x < 0.0)

{

 y = -x;

}

else

{

 y = x;

}

R5.7

Floating-point numbers only have limited precision so it’s very likely that any mathematical operation (like addition, multiplication, etc.) will introduce small errors into the result.

To check to see if an integer equals 10:

if (n == 10)

{

 System.out.println("It's 10!");

}

else

{

 System.out.println("It's not 10!");

}

To check to see if a floating-point number approximately equals 10:

final double EPSILON = 1E-14;

double x = 10.0;

if (Math.abs(x - 10) < EPSILON)

{

 System.out.println("It's approximately 10.0!");

}

else

{

 System.out.println("It's not 10.0!");

}

R5.8

In the first case when comparing if (floor = 13) you should get the error “Type mismatch: cannot convert from int to boolean".

In the statement count == 0; you should get the error “Syntax error on token “==”, invalid assignment operator”.

R5.9

	letter
	number
	color

	g
	5
	“black”

R5.10

The following test cases cover all four branches.

a) “g5”

b) “h5”

c) “g4”

d) “h4”

R5.11

Trace of appointment from 10-12 and one from 11-13:

	start1
	start2
	end1
	end2
	s
	e

	10
	11
	12
	13
	11
	12

Since s < e the program would report “The appointments overlap.” Which is indeed the case.

Trace of appointment from 10-11 and one from 12-13

	start1
	start2
	end1
	end2
	s
	e

	10
	12
	11
	13
	12
	11

Since s > e the program would report “The appointments don’t overlap.” Which is correct.

R5.12

The flowchart for Exercise R3.11:

[image: image1.wmf]

R5.13

The flowchart:

[image: image2.wmf]

R5.14

The flowchart:

[image: image3.wmf]

R5.15

	Test Case
	Expected Outcome
	Comment

	Start1=12 End1=14

Start2=15 End2=16
	No overlap
	Completely separate appointments

	Start1=12 End1=14

Start2=13 End2=15
	Overlap
	Overlap by 1 hour

	Start1=12 End1=14

Start2=11 End2=15
	Overlap
	Appointment 2 starts before and ends after Appointment 1

	Start1=12 End1=14

Start2=9 End2=10
	No overlap
	Appointment 2 starts and ends before Appointment 1

	Start1=12 End1=14

Start2=12 End2=14
	Overlap
	Exact same appointment

	Start1=12 End1=14

Start2=14 End2=17
	No Overlap
	Appointment 2 is right after Appointment 1, boundary condition

	
	
	

	
	
	

R5.16

	Test Case
	Expected Outcome
	Comment

	Month=1, Day=10
	Season=Winter
	First season, not divisible by 3

	Month=4, Day=10
	Season=Spring
	Second season, not divisible by 3

	Month=7, Day=10
	Season=Summer
	Third season, not divisible by 3

	Month=10, Day=10
	Season=Fall
	Fourth season, not divisible by 3

	Month=3, Day=21
	Season=Spring
	Second season, divisible by 3, boundary condition

	Month=6, Day=21
	Season=Summer
	Third season, divisible by 3, boundary condition

	Month=9, Day=21
	Season=Fall
	Fourth season, divisible by 3, boundary condition

	Month=12, Day=21
	Season=Winter
	First season, divisible by 3, boundary condition

	Month=3, Day=20
	Season=Winter
	First season, divisible by 3, beneath boundary

	Month=6, Day=20
	Season=Spring
	Second season, divisible by 3, beneath boundary

	Month=9, Day=20
	Season=Summer
	Third season, divisible by 3, beneath boundary

	Month=12, Day=20
	Season=Fall
	Fourth season, divisible by 3, beneath boundary

R5.17

Prompt for and read month from user.

Prompt for and read day from user.

if month equals “January”

 if day equals 1

 print “New Year’s Day”

if month equals “July”

 if day equals 4

 print “Independence Day”

if month equals “November”

 if day equals 11

 print “Veterans Day”

if month equals “December”

 if day equals 25

 print “Christmas Day”

R5.18

if score >= 90

 assign A

else if score >= 80

 assign B

else if score >= 70

 assign C

else if score >= 60

 assign D

else

 assign F

R5.19

When comparing strings lexicographically each letter in the two strings are compared from first to last with the following rules:

• Letters of the same case come in dictionary order.

• All uppercase letters come before lowercase letters.

• Space comes before all printable characters.

• Numbers come before letters.

• Punctuation also has order listed in Appendix A.

When one letter is found that comes before another, the string it belongs to is ordered before the other. Thus the sample strings given in the problem have the following order:

"Century 21" < "IBM" < "While-U-Wait" < "wiley.com"

R5.20

a) "Jerry"

b) "Tom"

c) "Churchill"

d) "car manufacturer"

e) "Harry"

f) "Car"

g) "Tom"

h) "Car"

i) "bar"

R5.21

In the case of an if/else if/else sequence, one clause is guaranteed to be executed, while in the case of nested if statements the internal clause is only true if all the if statements are true.

As an example one of the following lines of code will be printed:

if (n > 10)

{

 System.out.println("Greater than 10!");

}

else if (n >= 0)

{

 System.out.println("Between 0 and 10.");

}

else

{

 System.out.println("Less than 0.")

}

Whereas in this case the print will only execute if n is both greater than or equal to 0 and less than or equal to 10:

if (n >= 0)

{

 if (n <= 10)

 {

 System.out.println("Between 0 and 10.");

 }

}

R5.22

When comparing exact values the order of if/else if/else statements does not matter:

if (n == 1)

{

 System.out.println("1.");

}

else if (n == 2)

{

 System.out.println("2.");

}

else

{

 System.out.println("Something else.");

}

When comparing ranges of values it can:

if (n > 10)

{

 System.out.println("Greater than 10!");

}

else if (n >= 0)

{

 System.out.println("Between 0 and 10.");

}

else

{

 System.out.println("Less than 0.");

}

R5.23

The condition rewritten to use < operators instead of >= operators:

if (richter < 4.5)

{

 cout << "No destruction of buildings";

}

else if (richter < 6.0)

{

 cout << "Damage to poorly constructed buildings";

}

else if (richter < 7.0)

{

 cout << "Many buildings considerably damaged, some collapse";

}

else if (richter < 8.0)

{

 cout << "Many buildings destroyed";

}

else

{

 cout << "Most structures fall";

}

Changing the operators to < instead of >= forces the order of the options to be reversed, because of the order in which the comparisons are evaluated.

R5.24

	status
	income
	tax

	“Single”
	$1050.00
	$105.00

	“Single”
	$20000.00
	$2600.00

	“Single”
	$40000.00
	$6400.00

	“Married”
	$1050.00
	$105.00

	“Married”
	$20000.00
	$2200.00

	“Married
	$70000.00
	$10300.00

	“Single”
	$8000.00
	$800.00

R5.25

This is an example of the dangling else problem:

if (gpa >= 1.5)

 if (gpa < 2)

 status = "probation";

else

 status = "failing";

When reading the code it may mistakenly appear that a student fails only when the GPA is less than 1.5, when in reality the code executes like this:

if (gpa >= 1.5)

 if (gpa < 2)

 status = "probation";

 else

 status = "failing";

Now we see all students whose GPAs is over 2.0 are also listed as failing. To correct for this, we can add curly braces:

if (gpa >= 1.5)

{

 if (gpa < 2)

 {

 status = "probation";

 }

}

else

{

 status = "failing";

}

R5.26

	p
	q
	r
	(p && q) || !r
	!(p && (q || !r))

	false
	false
	false
	true
	true

	false
	false
	true
	false
	true

	false
	true
	false
	true
	true

	false
	true
	true
	false
	true

	true
	false
	false
	true
	false

	true
	false
	true
	false
	true

	true
	true
	false
	true
	false

	true
	true
	true
	true
	false

R5.27
This is true, the Boolean operation && is symmetric. One can test this by filling in all values of a truth table and noting both operations A && B and B && A have the same truth values:

	A
	B
	A && B
	B && A

	false
	false
	false
	false

	false
	true
	false
	false

	true
	false
	false
	false

	true
	true
	true
	true

R5.28

Boolean operations in search engines are spelled out in English while in Java they have symbolic replacements. For example OR is equivalent to “||” in Java while AND NOT would be equivalent to a combination of “&&” and “!=”.

R5.29

a) false

b) true

c) true

d) true

e) false

f) false

g) false

h) true

R5.30

a) b

b)!b

c)!b

d) b

R5.31

a) b = (n == 0);

b) b = !(n == 0);

c) b = ((n > 1) && (n < 2));

d) b = (n < 1) || (n > 2);

R5.32

The program attempts to read the integer before it actually tests to see if there’s an integer to read. To correct this problem the int quarters = in.nextInt(); line should be moved inside the body of the if statement.

